Exaggerated exercise pressor reflex in adults with moderately elevated systolic blood pressure: role of purinergic receptors.
نویسندگان
چکیده
The neurocirculatory responses to exercise are exaggerated in hypertension, increasing cardiovascular risk, yet the mechanisms remain incompletely understood. The aim of this study was to examine the in vitro effectiveness of pyridoxal-5-phosphate as a purinergic (P2) receptor antagonist in isolated murine dorsal root ganglia (DRG) neurons and the in vivo contribution of P2 receptors to the neurocirculatory responses to exercise in older adults with moderately elevated systolic blood pressure (BP). In vitro, pyridoxal-5-phosphate attenuated the ATP-induced increases in [Ca(2+)](i) (73 ± 15 vs. 11 ± 3 nM; P < 0.05). In vivo, muscle sympathetic nerve activity (MSNA; peroneal microneurography) and arterial BP (Finometer) were assessed during exercise pressor reflex activation (static handgrip followed by postexercise ischemia; PEI) during a control trial (normal saline) and localized P2 receptor blockade (pyridoxal-5-phosphate). Compared with normotensive adults (63 ± 2 yr, 117 ± 2/70 ± 2 mmHg), adults with moderately elevated systolic BP (65 ± 1 yr, 138 ± 5/79 ± 3 mmHg) demonstrated greater increases in MSNA and BP during handgrip and PEI. Compared with the control trial, local antagonism of P2 receptors during PEI partially attenuated MSNA (39 ± 4 vs. 34 ± 5 bursts/min; P < 0.05) in adults with moderately elevated systolic BP. In conclusion, these data demonstrate pyridoxal-5-phosphate is an effective P2 receptor antagonist in isolated DRG neurons, which are of particular relevance to the exercise pressor reflex. Furthermore, these findings indicate that exercise pressor reflex function is exaggerated in older adults with moderately elevated systolic BP and further suggest a modest role of purinergic receptors in evoking the abnormally large reflex-mediated increases in sympathetic activity during exercise in this clinical population.
منابع مشابه
Nerve Growth Factor, Muscle Afferent Receptors and Autonomic Responsiveness with Femoral Artery Occlusion.
The exercise pressor reflex is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure and heart rate primarily through activation of sympathetic nerve activity (SN...
متن کاملBlood Pressure Control at Rest and during Exercise in Obese Children and Adults
The hemodynamic responses to exercise have been studied to a great extent over the past decades, and an exaggerated blood pressure response during an acute exercise bout has been considered as an indicator of cardiovascular risk. Obesity is a major factor influencing the blood pressure response to exercise since evidence indicates that the arterial pressure response to exercise is exacerbated i...
متن کاملAldosterone and Salt Loading Independently Exacerbate the Exercise Pressor Reflex in Rats.
The sympathetic and pressor responses to exercise are exaggerated in hypertension. Evidence suggests that an overactive exercise pressor reflex (EPR) contributes to this abnormal responsiveness. The mechanisms underlying this EPR overactivity are poorly understood. An increasing body of evidence suggests that aldosterone and excessive salt intake play a role in regulating resting sympathetic ac...
متن کاملExercise pressor reflex in humans with end-stage renal disease.
Previous work has suggested that end-stage renal disease (ESRD) patients may have an exaggerated sympathetic nervous system (SNS) response during exercise. We hypothesized that ESRD patients have an exaggerated blood pressure (BP) response during moderate static handgrip exercise (SHG 30%) and that the exaggerated BP response is mediated by SNS overactivation, characterized by augmented mechano...
متن کاملCardiovascular regulation by skeletal muscle reflexes in health and disease.
Heart rate and blood pressure are elevated at the onset and throughout the duration of dynamic or static exercise. These neurally mediated cardiovascular adjustments to physical activity are regulated, in part, by a peripheral reflex originating in contracting skeletal muscle termed the exercise pressor reflex. Mechanically sensitive and metabolically sensitive receptors activating the exercise...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 306 1 شماره
صفحات -
تاریخ انتشار 2014